Quantum chemical studies of mononuclear zinc species of hydration and hydrolysis.

نویسندگان

  • Mengqiang Zhu
  • Gang Pan
چکیده

Optimal geometries, charge distributions, bond analysis, changes of Gibbs free energy, entropies and enthalpies of hydration, and hydrolysis reactions for mononuclear species of Zn(2+) including hydrated and hydrolysis complexes were investigated using quantum chemical calculations in the gas phase. Optimized geometrical structures showed that the stable hydrated and hydrolysis zinc species without outer-sphere water molecules were Zn(H(2)O)(6)(2+), Zn(OH)(H(2)O)(3)(+), Zn(OH)(2)(H(2)O)(2), Zn(OH)(3)(-), and Zn(OH)(4)(2-). Results of NPA (Natural Population Analysis) indicated that the charge on the Zn atom of the hydrated ions decreased but the charge on the zinc atom of the hydrolysis species increased with the increase of inner-sphere water molecules. NBO (Natural Bond Orbital) analyses demonstrated that hydrated and hydrolysis species of zinc were mainly electrostatic bonding compounds. Calculations of reaction energies indicated that inner-sphere water molecules became more unfavorable as the hydrolysis increased. Stepwise hydrolysis equilibrium constants decreased successively and the order remained unchanged when the inner-sphere dehydration occurred.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis.

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a ...

متن کامل

Ion exchange growth of Zinc Sulfide quantum dots in aqueous solution

We report the growth by ion exchange synthesis of ZnS nanoparticles in MCM-41 matrices using Zn (CH3COO)2 and Na2S starting sources. The final product (ZnS/MCM-41) was characterized by X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectrometry (IR) and UV-vis spectroscopy. Its crystalline st...

متن کامل

The activity of the dinuclear cobalt-β-lactamase from Bacillus cereus in catalysing the hydrolysis of β-lactams

Metallo-β-lactamases are native zinc enzymes that catalyse the hydrolysis of β-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted βlactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentra...

متن کامل

Quantum chemical studies on adsorption of imidazole derivatives as corrosion inhibitors for mild steel in 3.5 NaCl solution

Adsorption of benzimidazole, 2-methylbenzimidazole and 2-aminobenzimidazole on mild steel in 3.5 NaCl solution was studied using density function theory DFT calculations. In this regard, charge transfer resistance Rct and double layer capacitance Cdl obtained by electrochemical impedance spectroscopy EIS were used to calculate surface coverage and to build prediction models. When prediction mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 109 33  شماره 

صفحات  -

تاریخ انتشار 2005